

Note

Synthesis and anti microbial activity of quinoxaline based thiazolidinones and azetidinones

D A Vyas^{*a}, N A Chauhan^b & A R Parikh^b

^a Research & Development Centre, Indian Petrochemicals Corporation Ltd, Baroda-391 346 India
E-Mail: drdav@indiatimes.com

^b Department of Chemistry, Saurashtra University, Rajkot-360 005-India

Received 27 June 2006; accepted (revised) 21 May 2007

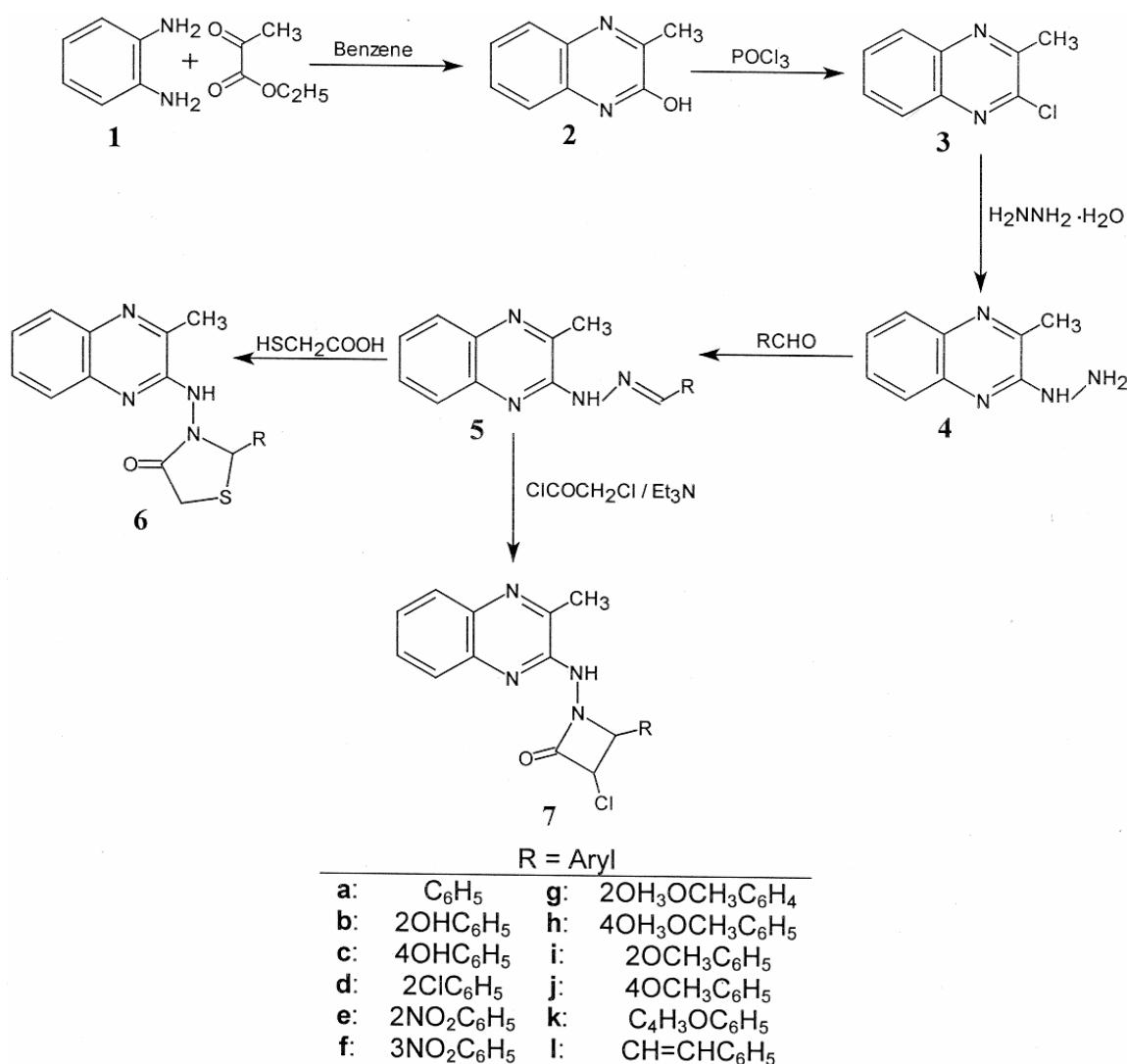
Several 2-aryl-3-(3'methyl quinoxalin-2'-yl-amino) 4-thiazolidinones **6a-l** and 1-N-(3'methylquinoxalin-2'-yl-amino)4-aryl -3-chlodro-2-azetidinones **7a-l** have been synthesized and tested for their antimicrobial and antifungal activity against different microorganism. The structure of compounds **6a-l** and **7a-l** have been conformed on the basis of their elemental and spectral data.

Keywords: Quinoxalines, thiazolidinones, azetidinones, antimicrobial activity.

Quinoxaline and its analogs constitute the active class of the compounds possessing wide spectrum of biological activity¹⁻⁸, antiviral⁹ (Hepatitis-B), antimicrobial¹⁰, and amoebicidal¹¹ activity. Further thiazolidinones and azetidinones are well famed for their antimicrobial¹²⁻²² activities. In the light of above fact we have synthesized some new 4-thiazolidinones and 2-azetidinones derivatives incorporating quinoxaline moiety with the hope to possess better antimicrobial activity. All the synthesized compounds were screened for their antibacterial and antifungal activities against some selected microbes.

Results and Discussion

The chemical synthesis initiate with the reaction of *o*-phenylenediamine **1** and ethyl pyruvate were mixed in dry benzene to yield 2-hydroxy-3-methyl quinoxaline **2**, compound **2** on treatment with phosphorus oxychloride yielded 2-chloro-3-methyl quinoxaline **3**. The chloro compound and hydrazine hydrate were refluxed in ethanol for 3 hr. to yield 2-hydrazino 3-methyl quinoxaline **4**. A mixture of compound **4** and different aromatic aldehydes in methanol refluxed to give 3-methyl-2-(arylidene hydrazine) quinoxaline **5a-l**. The compounds **5a-l** was refluxed with thioglycolic acid to yield 2-aryl-3-


(3'methyl quinoxalin-2'-yl-amino) 4-thiazolidinones **6a-l**. The compounds **7a-l** were synthesized by reacting compounds **5a-l** with chloro acetyl chloride in presence of triethyl amine (**Scheme I**). The structure of all the newly quinoxaline derivatives were confirmed on the basis of their spectral and analytical data.

Antimicrobial activity

The antimicrobial activity was assayed by the cup-plate agar diffusion method²³⁻²⁴ at the concentration of 40 µg/mL. All the synthesized compounds were tested *in vitro* for their antimicrobial activities against various microbes such as *Escherichia Coli*, *A. niger*, *Bacillus subtilis*, *Pseudomonas aeruginosa* etc. Plates incubated 24 hr for bactericidal and 48 hr for fungicidal activities the inhibition zone of testing compounds was measured in mm (**Table I**). Under the identical conditions, the standard antibiotics showed zone of inhibition like ampicillin 15-26 mm, chloramphenicol 15-18 mm, penicillin 18-23 mm against bacterial strains. It can be concluded from the **Table I** that compounds **6a**, **6b**, **6c**, **6g**, **6h**, **6i** and **7d**, **7i** and **7l** were highly active against *Bacillus Subtilis*. The compound **6b**, **6e**, **6f**, **6h** and **7b**, **7c**, **7d**, and **7f** showed significant activity against *Bacillus serus* and **6a**, **6g**, **6j**, **7b**, **7d**, **7k** and **7l** were found active against *pseudomonas*. In the case of *Escherichia coli*, all the compounds **6** and **7d**, **7i**, **7j**, and **7k** showed maximum activity. All the compounds **6** and **7d**, **7e** and **7i** showed highest activity against *Aspergillum niger*. The other compounds showed either moderate or less activity against these organism.

Discussion

The IR. spectrum of compound **4** showed a sharp doublet at 3286 and 3188 cm⁻¹ due to the NH str of NH₂. Compound **4** on condensation with carbonyl compounds, these bands disappear and a band at 3298 cm⁻¹ is observed due to NH str of NH=N- group. The ¹H NMR spectrum of compound **4** showed a broad signal at δ 4.25 due to NH₂ protons and at 6.5 the characteristics of NH proton. The compound on condensation with carbonyl compounds the hydrazone formed shows the disappearance of NH₂ proton signals, while that of NH proton signal is shifted up

Scheme I**Table I**—Antimicrobial data (inhibition zones 16 mm- 25 mm) of some selected synthesized compounds

Standard Antibiotics	<i>B. subtilis</i>	<i>B. serus</i>	<i>E. coli</i>	<i>Pseudomonas</i>	<i>A. niger</i>
Ampicillin	6a,6b,6c				
15-25mm	6g,6h,6i	6b,6e,	6a-6l	6a,6g,6j	6c,6h,6i
Chloramphenicol	7d,7i,7l	6f,6h,	7d,7i	7b,7d,7k	6j,6k,6l
15-28 mm		7b,7c,	7j,7k	7l	7d,7e,7i
Penicillin			7d,7f		
18-23 mm					
Greseofulvin					
15-20 mm					

a, C_6H_5 -; **b**, $2-OH-C_6H_5$ -; **c**, $4-OH-C_6H_5$ -; **d**, $2-Cl-C_6H_5$; **e**, $2-NO_2-C_6H_5$ -; **f**, $3-NO_2-C_6H_5$; **g**, $2-OH-3-OCH_3-C_6H_4$; **h**, $4-OH-3-OCH_3-C_6H_4$ -; **i**, $2-OCH_3-C_6H_4$ -; **j**, $4-OCH_3-C_6H_4$; **k**, $C_4H_3O-C_6H_5$ -; **l**, $-CH=CH-C_6H_5$ -

field at δ 9.12 as a result of de shielding effect of $\text{CH}=\text{N}-$ group. The proton of azomethine ($-\text{N}=\text{CH}-$) group lead to a sharp singlet at 8.4. The multiplet signals at 6.9-8.4 are the characteristics of the aromatic ring protons. A sharp signal appears at δ 3.93, the characteristics of the protons of $-\text{OCH}_3$, similarly a sharp signal at δ 2.27 is characteristics of the protons of $-\text{CH}_3$. In all the compounds a sharp singlet at δ 2.6 is due to the protons of $-\text{CH}_3$ attached to the heteryl nucleus (quinoxaline ring). In case of 2-*p*-anisyl-3-(3'-methylquinoxalin-2'-yl-amino)-4-thiazolidinone gave a sharp signal at δ 3.69 the characteristics of the protons of $-\text{CH}_2$ group of 4-thiazolidinone ring. The ^1H NMR spectrum of 1-*N*-(3'methylquinoxalin-2'-yl-amino)-4-2'methoxy benzylidene-3-chloro-2-azetidinone gave two doublets at δ 4.67 and 3.75 due to the two hydrogen atoms on C_3 and C_4 carbon atom respectively.

Experimental Section

All the recorded melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a simadzu FT-IR -8400 spectrophotometer and ^1H NMR spectra on Bruker Spectrometer (300 Mz) using TMS as an internal standard. All chemical shift values were recorded as δ (ppm).

2-Hydrazino-3-methyl quinoxaline 4. *o*-Phenylenediamine (0.01 mole) and ethyl pyruvate (0.01 mole) were mixed in dry benzene to yield 2-hydroxy-3-methyl quinoxaline which (0.01 mole) on treatment with phosphorus oxychloride (6 mL) yielded 2-chloro-3-methyl quinoxaline. The chloro compound (0.015 mole) and hydrazine hydrate (0.02 mole 99%) in ethanol (25 mL) refluxed for 3 hr. to yield 2-hydrazino-3-methyl quinoxaline **4** yield 92.5%; m.p. 172 °C. The product was recrystallised with ethanol to give the pure compound. IR (KBr) 3288 and 3186 (doublet for NH of NH_2), 1625 ($\text{C}=\text{N}$ Str), 1573 (-NH def) 1191 cm^{-1} (-C-N Str). ^1H NMR (DMSO- d_6): δ 2.52 (s, 3H) 4.25 (br, 2H, NH_2 D_2O exchangeable) 6.2 (br, 1H, NH) 7.74 & 7.86 (d, 2H, quinoxaline ring protons), 7.43 and 7.56 (t, 2H, quinoxaline ring protons) ppm. ^{13}C NMR showed signals at δ 127.98 (d, C-5), 127.52 (d, C-6), 129.62 (d, C-7), 129.69 (d, C-8), 140.36 (s, C-9), 141.18 (s, C-10), 147.02 (s, C-2), 152.00 (s, C-3) carbon atoms of quinoxaline moiety and δ 22.83 (quartet) ppm of methyl carbon on C-2. Anal. Calcd for $\text{C}_9\text{H}_{10}\text{N}_4$ C,

62.05; H, 5.78; N, 31.17. Found: C, 62.25; H, 5.92; N, 32.01%.

3-Methyl-2-(2'-hydroxy-3'-methoxy benzylidene)hydrazine quinoxaline 5g. A mixture of compound **4** (0.01 mole) and *p*-methoxybenzaldehyde (0.01 mole) in methanol was refluxed for 6 hr. The product separated was isolated and neutralized with sodium bisulphite to get 3-methyl-2-(4'-methoxy benzylidene) hydrazino quinoxaline yield 85%; m.p. 185 °C. IR (KBr): 3540 (-NH Str), 1600 ($\text{C}=\text{N}$ Str), 1541 (NH def) 1166 (C-N Str) and 1040 cm^{-1} (-C-OCH₃). ^1H NMR (DMSO- d_6): δ 2.62 (s, 3H, CH₃), 3.95 (s, 3H, OCH₃), 6.85 and 6.95 (d, 2H, $J=10\text{Hz}$ part of A₂B₂system of protons from methoxy containing aryl ring) 7.0 and 7.25 (d, 2H, quinoxaline ring protons) 7.2 and 7.35 (t, 2H, quinoxaline ring protons), 7.75 and 7.85 (d, 2H, $J=10\text{Hz}$ part of A₂B₂system of protons from methoxy containing aryl ring) 8.4 (s, 1H, $\text{N}=\text{CH}-$), and 9.12(s, 1H, -NH-N). Anal. Found C, 65.99; H, 5.15; N, 18.10 $\text{C}_{17}\text{H}_{16}\text{N}_4\text{O}_2$ requires C, 66.23; H, 5.19 and N, 18.18%. Similarly other member of compound **5** was prepared.

2-*p*-Anisyl-3-(3' methyl quinoxalin-2' yl-amino)4-thiazolidinones 6. A mixture of 3-methyl-2-(*p*-methoxy benzylidene hydrazino)quinoxaline (0.01 mole) and thioglycolic acid (0.94 g 0.01 mole) was heated on the oil-bath at 115-20 °C for 12 hr. The resulting mass was treated with 10% sodium bicarbonate and the product was isolated, yield 50%; m.p. 145 °C. IR (KBr) 3361 (-NH Str), 1708 (C=O Str), 1660 (C=N Str), 1577 (NH def) 1184 (C-N Str), 1040 (-C-OCH₃) and 659 cm^{-1} (C-S-C Str). ^1H NMR (DMSO- d_6): δ 2.62 (s, 3H, CH₃), 3.69 (s, 2H, -CH₂), 3.93 (s, 3H, OCH₃) 5.39 (s, 1H, CH-Ar) 6.85 and 6.95 (d, 2H, Ar-H), 7.75 & 7.85 (d, 2H) 7.0 and 7.25 (d, 2H, quinoxaline ring protons), 7.2 and 7.35 (t, 2H, quinoxaline ring protons) 8.80 (br, 1H). Anal. Found C, 61.80; H, 4.60; N, 11.40. $\text{C}_{19}\text{H}_{17}\text{N}_3\text{O}_3\text{S}$ requires C, 62.12; H, 4.63 and N, 11.44%. Similarly other members of compounds **6** were prepared.

Preparation of 1-*N*-(3' methyl quinoxalin-2'yl-amino) 4-aryl-3-chloro-2-azetidinones 7. To a solution of 3-methyl-2-(2'-methoxy benzylidene hydrazino) quinoxaline (0.01 mole) in dry dioxane (35 mL) was added to well-stirred mix of triethyl amine (0.012 Mole) and chloroacetyl chloride (0.012 mole) at low temperature. The resulting solid was crystallized from chloroform-methanol mixture to give pure 1-*N*-(3'methyl quinoxalin-2'-yl-amino) 4-

aryl-3-chloro-2-azetidinone yield 58%; m.p. 148 °C. IR (KBr): 3256 (-NH Str), 1762 (β-lactam ring C=O Str), 1604 (C=N Str), 1542 (NH def) 1184 (C-N Str), 1040 (-C-OCH₃) and 752 cm⁻¹ (C-Cl Str). ¹H NMR (DMSO-*d*₆): δ 2.69 (s, 3H), 4.97 (d, 1H), 3.74 (d, 1H), 3.97 (s, 3H) 6.92-7.8 (m, 4H) 7.43 & 7.56 (t, 2H, quinoxaline ring protons), 7.74 and 7.86 (d, 2H, quinoxaline ring protons) 11.6 (br, 1H). Anal. Found C, 62.0; H, 4.85; N, 15.20. C₁₉H₁₈N₄O₂Cl requires C, 62.12; H, 4.90 and N, 15.25%.

Acknowledgement

The authors are thankful to The Head, Department of Chemistry, Saurashtra University, Rajkot for valuable guidance and permission to publish the work and to the Microbiology Department for providing facilities for *in vitro* screening. Sincere thanks are due to Dr. Manjeet Singh Choudhary (General Manager-R&D IPCL) for providing research facilities.

References

- 1 Lonard J & Su San A, *J Med Chem*, 38, **1995**, 3720.
- 2 Makino K, Kim H S & Yoshihisha K, *J Heterocycle Chem*, 35, **1998**, 321, 489.
- 3 Zhu Z, Saluja S, Drach C J & Townsend L P, *J Chinese Chem Soc*, 45, (4), **1998**, 465.
- 4 Lone J, *Chem Abstr*, 124, **1996**, 8850b.
- 5 Sainz Y, Montoya M E, Lopez A & Monge A, *arzniem Forsch*, 49, **1999**, 55 *Chem Abst*, 130, **1999**, 3827p.
- 6 Mange A, Palop J A, Vrbaos I, Fernandez E, *J Heterocycle chem*, 26, **1989**, 1623.
- 7 Yoo H W, Yun Sil L, Suh M E & Kim D, *Arch Pharm*, 331, 1998, 10331.
- 8 Gozys S, Kenzi M & Yoshihisa K, *Heterocycles*, 27, **1988**, 2481.
- 9 El-Asry E S H, Abdel Rahman & A A H Rasheed, *Pharmazie*, 54, **1999**, 893.
- 10 El-Hawash S A, Habib N S & Fanaki N, *Pharmazie*, 54, **1999**, 808.
- 11 Madhavan Bindu V, Prabhaker B C, Kumar C D & Helmut R R, (Hoechst India Pvt Ltd) Indian IN 167, 425.
- 12 NewKone G R & Nayak A, *Advances in heterocyclic chem*, 25 (Academic press Inc. New York) **1979**, 83.
- 13 Ingle V S, Sawale A R, Ingle R D & Mane R A, *Indian J Chem*, 40B, **2000**, 124.
- 14 Mishra S, Shrivastava S K & Shrivastava S D, *Indian J Chem*, 36B, **1997**, 826, *Indian J Chem*, 40B, **2000**, 947.
- 15 Ladva K, Dave U & Parekh H, *J Indian Chem Soc*, 68, **1991**, 379.
- 16 Viltaria D M, Orazio M, Eugenio P, Anlonia C, Fedrico G & Adde B, *J Med Chem*, 35, **1992**, 2910, *Chem Abstr*, 117, **1992**, 62288t.
- 17 Pandya D & Nair K B, *Pharmazie*, 48, **1993**, 414, *Chem Abstr*, 120, **1993**, 106843p.
- 18 Datta Neela J, Khunt Ranjan C & Parikh A R, *Indian J Chem*, 41B, **2002**, 433.
- 19 *The chemistry of β-lactams*, Edited by Page M I (Chapman & Hall London **1992**. The Organic chemistry of β-lactams George G I (VCH New York **1993**) and Setti E L & Micetich R G, *Curr Med Chem*, 5, **1998**, 101.
- 20 Alington R M, *J Med Chem*, 44, **2001**, 1491.
- 21 Kanno O, Kawamoto I, *Tetrahedron*, 56, **2000**, 5639.
- 22 Page M I & Laws A P, *Tetrahedron*, 56, **2000**, 5631.
- 23 Barry A L, *The antimicrobial susceptibility test, Principle and practices*, edited by illus lea and febiger (Phila\adelphia Pa USA) 180, **1976**, *Biol Abstr*, 64, **1977**, 25183.
- 24 Gravestock M B & Ryley J F, *Antifungal chemotherapy annual reports in medical chemistry*, 19, **1984**, 127.